Progetti europei

Progetti in corso


Project acronym: BIOBUILD
Project title: Innovative bio-based building materials with thermal energy storage function
Grant Agreement Number: 101135629
Duration: 48 months
Funding scheme: Horizon Europe RIA
Call identifier: HORIZON-CL6-2023-CIRCBIO-01
Principal Investigator: Prof. Luca Cappellin


The aim of BIOBUILD project is to develop and demonstrate fully bio-based building materials with thermal storage function that can replace high environmental footprint products. Our solution demonstrates functional incorporation of bio-based phase change materials (bioPCMs) into solid wood and wood fibres bound by plant oil resins, lignin, or fungal mycelia to produce novel biocomposite building materials with significantly improved thermal properties. The novel materials possess a high multifunctional performance, meet requirements for sustainable “green” production, and ensure end-of-life options and recycling. Environmental and social impacts and benefits are fully integrated into the life-cycle perspective.


Project acronym: BioPoweredCL
Project title: Bright and biologically powered chemiluminescent labels for cell and tissue imaging
Grant Agreement Number: 949087
Duration: 60 months
Funding scheme: Horizon 2020 - ERC-STG
Call identifier: H2020-ERC-2020-STG
Principal Investigator: Prof. Alessandro Aliprandi


Imaging is one of the most powerful technique to visualize molecules, tissues, to understand and follow processes and it is the most used diagnostic tool in vitro and in vivo, Current biomedical imaging techniques can have high sensitivity, good spatial/temporal resolution and, in some cases, high tissue penetration but cannot combine all of these desired properties without using harmful radiations (or toxic labels) or very expensive equipment. Optical imaging techniques represent the best compromise among them; however, their ability to scale to human body is precluded. The main restriction of fluorescence imaging is that it requires light excitation which is limited by tissue absorption and scattering. Such limitations are not present in chemiluminescence imaging since light production occurs through a chemical reaction, resulting in higher penetration depth and best sensitivity. However, both natural and artificial chemiluminescent systems require a continuous flow of exogenous reactants since all substrates are irreversibly consumed. BioPoweredCL aims to develop an unprecedented strategy to enable molecular imaging by realizing near infrared luminophores that harvest energy from the cellular respiration chain, in order to emit light without being consumed themselves. BioPoweredCL takes advantage of the most recent progress in artificial light production to develop a novel imaging technique where the absence of an excitation source overcomes the current limitations of fluorescence imaging while the regeneration of the luminophore overcomes the limitations of bioluminescence imaging. If successful it could replace current techniques based on harmful ionizing radiations such as X-rays or γ-rays. To reach such a grand-challenge the work plan is articulated into three different phases: 1) synthesis of new luminophores; 2) electrochemical characterization and energy cell harvesting; 3) in vitro experiments where the full potential of the approach will be validated.


Project acronym: brightLINK
Project title: Light-induced macroscopic assembly under dissipative conditions: communication between artificial swimmers
Grant Agreement Number: 101107832
Duration: 36 months
Funding scheme: HORIZON-MSCA-2022-PF (Global Fellowships)
Call identifier: HORIZON-MSCA-2022-PF-01
Coordinator: University of Padova (UNIPD)
Supervisor: Prof. Leonard Jan Prins
Fellow: Dr. Jacopo Movilli

Nature exploits transient self-assembled architectures that require a continuous input of energy to express functional properties across length scales. The development of synthetic mimics of such non-equilibrium systems provides access to innovative materials with life-like properties, which respond to external stimuli while adapting their structure. However, the production of macroscopic building blocks that self-assemble under dissipative conditions to display emergent functionalities remains an ongoing challenge.

This multidisciplinary project aims to create a macroscopic self-assembling system that shows communication between the constituent artificial building blocks under dissipative conditions. In particular, swimmers that self-assemble under light irradiation are exploited as a minimalistic model of responsive macroscopic matter with dissipative characteristics. Light induces the swimmer locomotion, concomitantly providing energy to allow the anchoring between them. Thanks to a reaction-diffusion network, a successful connection is signalled by fluorescence emission confined at the interface of the interlinked swimmers. Due to the nonequilibrium state, the fluorescence is maintained when light is removed and the assembled structure slowly relaxes back to individual entities (no emission). Upon re-establishing the illumination, the cycle is repeated. These results make a leap from passive building blocks to dynamic molecular systems to macroscopic functional matter with embedded networks.


Project acronym: ChirAzaL
Project title: Unconventional Crafting of Chiral Azacompounds using Visible Light Photocatalysis
Grant Agreement Number: 101105828
Duration: 24 months
Funding scheme: HORIZON-MSCA-2022-PF (European Fellowships)
Call identifier: HORIZON-MSCA-2022-PF-01
Coordinator: University of Padova (UNIPD)
Supervisor: Prof. Luca Dell'Amico
Fellow: Dr. Ricardo Isaac Rodriguez Perez

The aim of ChirAzaL is to devise innovative and sustainable technologies in organic synthesis to access general, modular, and scalable crafting of two families of biologically relevant chiral nitrogen-containing molecules, namely: azetidines and multisubstituted linear amines. Such molecules are characterized by a complex three-dimensional arrangement and a high degree of saturation. Harnessing visible-light as sustainable and unexpensive source of energy, I will use a strain-release approach to access these synthetically complex scaffolds. Asymmetric phase transfer catalysis and chiral-metal templated catalysis will be the foundation of this proposal for securing stereocontrol. In order to accomplish the overarching goal of the research program, it will be divided into two main stages: an exploratory Stage I, followed by the consequently more applicative Stage II. The application of the developed photocatalyzed transformations in flow technology will unlock a new and operational-friendly pathway to azetidines and multisubstituted linear amines under mild and efficient conditions. Lastly, the implementation of the developed chemistry, as a functionalization tool, will give access to a straightforward methodology which has serious potential to be embraced on any synthetic route. The multidisciplinary skills acquired due to the interaction between the two phases, together with the transfer of knowledge between me and the hosting group will guarantee the successful realization of ChirAzaL.


Project acronym: DIRNANO
Project title: Directing the immune response through designed nanomaterials
Grant Agreement Number: 956544
Duration: 48 months
Funding scheme: Horizon 2020 - MSCA - ITN
Call identifier: H2020-MSCA-ITN-2020

Coordinator: Department of Biomedical Sciences, Padova University
Local Coordinator:  Prof. Fabrizio Mancin, Prof. Edmondo Benetti


DIRNANO provides a highly integrated and interdisciplinary training of next-generation Early Stage Researchers (ESRs) at the interface of nanopharmaceutical bioengineering and its translation on preclinical and human immunology. DIRNANO will develop biocompatible nanopharmaceuticals with either “super”-stealth or immune-specific behavior for cancer immunotherapy and vaccination by mapping nanoparticle-immune interactions through two core approaches: 1) inception of novel surface engineering approaches, based on new organic polymers, zwitterionic lipids and conjugation chemistry strategies, 2) engineering of host or microbial-derived modulators of innate immunity (e.g. complement system).

DIRNANO team comprises internationally renowned scientists and industrialists at the forefront of nanoengineering, pharmaceutical sciences, molecular biosciences, commerce and business, thereby generating a unique pan-European macro-environment for interdisciplinary training of ESRs at the highest international level. Through participation of industrial partners, we will furnish ESRs with in-demand industrial and business skills, including process manufacturing, reproducibility and regulatory challenges, intellectual property and commercialization strategies.

DIRNANO will lead to rational engineering of broader libraries of NPs with tunable immune-modulating functions. The combinatorial analysis of new nanomaterial core-coat scaffolds will improve temporal and spatial understanding of biomaterial-innate immune interactions at the molecular level, thereby filling the void in overcoming adverse reactions to nanopharmaceuticals injection. DIRNANO will drive future development of small molecules and biologics-based nanopharmaceuticals through a “low-risk-high gain” perspective and within the context of personalized therapies and precision medicine. As such, DIRNANO, will extensively contribute to European science, education and socioeconomics value, skill retention and brain-gain.



Project acronym: ENLIVEN
Project title: hiErarchical metal-orgaNic framework@covaLent organic framework (MOF@COF) on carbon nanofIbers for electrocatalytic CO2 conVErsioN
Grant Agreement Number: 101107269
Duration: 24 months
Funding scheme: HORIZON-MSCA-PF (European Fellowships)
Call identifier: HORIZON-MSCA-2022-PF-01
Coordinator: University of Padova (UNIPD)
Supervisor: Prof. Stefano Agnoli
Fellow: Dr. Seyyed Abbas Noorian Najafabadi

Electrocatalytic CO2 reduction (ECR) reaction offers a powerful strategy to enable a circular economy that converts CO2 from a waste to a useful resource. Among the possible catalysts for the ECR, metal-organic frameworks (MOFs) offer a tunable porous structure for rapid mass transport and easy access to a high density of catalytic sites, which can be tailored at the molecular level, leading to superior activity. Moreover, copper-based MOFs (Cu-MOFs) show relatively low cost and ability to form C2+ products. However, the low selectivity, poor stability and electrical conductivity set obstacles for ECR applications of these materials. The ENLIVEN project aims to surpass these limits, through the combination of Cu-MOFs with highly stable and conductive covalent organic frameworks (COFs) forming core@shell MOF@COF thin films on mesoporous conductive carbon nanofibers (CNFs). To this aim, CNFs prepared by electrospinning will be covered by a homogenous metal oxide layer and then pyrolysed to produce metal seeds for the solvothermal growth of homogeneous crystalline Cu-MOF-NH2 layers. Then, the NH2 functionalized surface will be modified with aldehyde groups necessary for the growth of a COF layer. To allow tuning the selectivity towards the ECR and decreasing the competing hydrogen evolution reaction, superaerophilic electrodes will be assembled using COF ligands with hydrophobic groups and designing a special morphology. Also, ENLIVEN will study the new confined chemistry that takes place inside the pores of MOF@COF architectures, rationally designed from the molecular- through nano- to meso-scale. This knowledge will provide the blueprints for the development of more durable and efficient electrocatalytic materials. The project will be conducted in UNIPD and DTU (secondment).


Project acronym: ENRICH
Project title: Molecular receptors enrich methylated and acetylated peptides for ultra-sensitive proteomics to explore the hidden modified proteome in disease
Grant Agreement Number: 101131120
Duration: 48 months
Funding scheme: Horizon Europe MSCA
Call identifier: HORIZON-MSCA-2022-SE-01
Principal Investigator: Prof. Fabrizio Mancin


Scientific studies indicate that inefficient epigenetic control is associated with a wide variety of non-communicable diseases (NCDs) like cancer, schizophrenia, and diabetes. Indeed, histone post translational modifications (PTMs) are crucial for many cellular processes including transcription and DNA repair. Thus, the ability to readily and reliably detect PTMs is crucial to better understand epigenetic processes and the complex functions of histone PTMs in human diseases. Mass spectrometry (MS) is the technique of choice to identify such modifications across the proteome. MS requires an enrichment step generally performed using antibodies, but these have several limitations such as high costs, batch-to-batch variability and data reproducibility. In a multidisciplinary effort ENRICH aims at developing new cost-effective, fast and efficient tools for the enrichment of post translationally modified proteins overcoming the current limitation. ENRICH will functionalize nanoparticles (NPs) with molecular receptors able to enrich PTM-containing peptides, derived from proteolytic digestion, for subsequent MS analysis. Concurrently, the ability and selectivity of the synthesized receptors and functionalized NPs will be evaluated via spectroscopic analyses. The ENRICH network gathers the expertise required to tackle this challenge. The consortium is composed of 9 high-level academic research groups from 2 different continents (Europe and America) and 2 highly innovative companies. By the seconding of 87 ERs/ERSs across Europe and worldwide, the aim is to capitalize on the consortium expertise in complementary fields such as chemical synthesis, spectroscopy, and proteomics. The network promotes an effective integrate training of researchers, boosting their career development, and promotes collaborations between the partners. The direct involvement of industries guarantees the timely exploitation of the results from research laboratories to innovative products.


Project acronym: HYPMET
Project title: Hyperpolarized Magnetic Resonance at the point-of-care
Grant Agreement Number: 101117082
Duration: 60 months
Funding scheme: HORIZON-ERC
Call identifier: ERC-2023-STG
Principal Investigator: Prof. Gabriele Stevanato

HYPMET proposes a pioneering research methodology for hyperpolarized magnetic resonance for real-time monitoring of upregulated metabolic pathways in cancer cells and in-vivo and for body fluid metabolic analyses with the prospect of revolutionizing the medical approach to personalised treatments.
A common analytical method for structural biology, medical imaging, and chemical analysis is nuclear magnetic resonance (NMR), which is flexible but intrinsically insensitive. Even in the most sensitive NMR spectra, many endogenous compounds found in blood, saliva, or urine are currently unresolved.
HYPMET will establish a ground-breaking technology enabling the detection of body fluids metabolites below the current limit of NMR detection (~μM) and the real-time monitoring of clinically relevant metabolic pathways in-cells and in-vivo; it will enable NMR metabolomics analyses at the point-of-care and will be fully compatible with personalised medical treatments; it will be compact (less than 10×10×30 cm) and will not require superconducting magnets.
Emerging methods (e.g. hyperpolarisation methods - HM) can boost the NMR signal intensity. HYPMET will merge two HMs to achieve NMR signal enhancements of several thousand-fold continuously, in the liquid state and at ultra-low-magnetic field (ULF, i.e. <10 mT) for many nuclear isotopes. The two HMs are: Overhauser Dynamic Nuclear Polarization (ODNP) and Signal Amplification By Reversible Exchange (SABRE). The PI unique expertise spans method development on various HMs and development and implementation of a protocol for real-time monitoring of pyruvate to lactate conversions in-cells and in-vivo to probe the state of a tumor in real-time.
Success in this multidisciplinary project will pave the way for efficient NMR metabolomics analyses and for better real-time metabolic conversion monitoring directly at the point-of-care. In the future, the technology could be further reduced in size and become a widespread clinical tool.


Project acronym: iSenseDNA
Project title: Computation driven development of novel vivo-like-DNA-nanotransducers for protein structure identification
Grant Agreement Number: 101046920
Duration: 48 months
Funding scheme: Horizon Europe EIC-Pathfinder
Principal Investigator: Prof. Stefano Corni


The link between the structural change of a molecule and its function is of fundamental importance since it provides direct insight on mechanism of complex biological processes. Recent years have witnessed noticeable advances of analysis of complex molecular conformations, however the understanding of their conformational dynamics remain a formidable challenge and revolutionary advances are still demanded the analysis of chemical composition and structure of biomolecules, however the understanding of their conformational dynamics remains a formidable challenge, and revolutionary advances are still demanded. Molecular machines, such as the DNA itself, which work at the core of many cellular activities, is able to DNA modify its conformation and to transduce the signal upon binding to specific proteins. In this project, we will develop a DNA-nanotrasducer for real-time detection of conformational changes and the analysis of molecular dynamics as it occurs in-vivo biological processes. The project aims to provide: (i) the development of DNA-nanotransducers that can perform both detection and conformational analysis of molecular dynamics in one functional unit (ii), Use bioinformatics approaches to predict 3D structure of conformational states modelling real time evolution of interacting DNA-NT and proteins, and machine learning (ML) models to directly link the atomistic structure, conformational state, and dynamics (iii) Assess protein-DNA-NT binding by experimental approaches using linear and “on-chip” non-linear spectroscopies for the detection of vibrational signatures of organic molecular systems, to recognize consequent structural changes in the optical signal in real-time, (iv) Describe DNA-NT/protein interactions at the cellular level and 3D analysis of DNA-NT and model proteins, towards drug discovery. These research efforts will provide a foundation for a next generation of DNA-nanotransducers to be used for high-throughput functional molecular structure.


Project acronym: KNOWSKITE-X
Project title: Knowledge-driven fine-tuning of perovskite-based electrode materials for reversible Chemicals-to-Power devices
Grant Agreement Number: 101091534
Duration: 48 months
Funding scheme: Horizon Europe RIA
Call identifier: HORIZON-CL4-2022-RESILIENCE-01
Principal Investigator: Prof.ssa Antonella Glisenti


We target a knowledge-based methodological entry to the finding of new generation electrode materials based on perovskites for reversible SOFC/SOEC technologies. The latter are archetypal complex systems: the physico-chemical processes at play involve surface electrochemical reactions, ionic diffusion, charge collection and conduction, which all occur timely within a very limited region. Hence, true in-depth understanding of the key parameters requires characterisation at the right place, at the right time frame and under the proper operating conditions. The price to pay for achieving this multiply-relevant characterisation is the involvement of non-trivial, advanced characterisation techniques. Multi-scale modelling will contribute to turn experimental datasets into a genuine scientific description and make time-saving predictions. In KNOWSKITE-X, the coupling between theoretical and experimental activities is made real by the choice of partners, who are all active in genuinely articulate theory and practice to understand active systems. To provide unifying concepts and to widen the project’s outcomes, intensive collaboration with knowledge discovery using machine-learning and deep learning methods is planned and AI-enabled tools will be used to compensate the smallness of relevant datasets. Such efforts are intended in view of building strong correlations capable of establishing robust composition-structure-activity-performance relations and hence, lead the way to knowledge-based predictions. By doing this, we also target the implementation of simplified testing protocols and tools operable by industrial stakeholders, which results can be augmented thanks to the knowledge-based pivotal correlations implemented during the project. To this end, dedicated efforts will be made in certifying the interoperability and usability of the project’s advances in the form of harmonised documentation and open science sharing.


Project acronym: NITROGEN-LIGHT
Project title: Photo(electro)catalytic Nitrogen Fixation
Grant Agreement Number: 894986
Duration: 36 months
Funding scheme: H2020-MSCA-IF (Global Fellowships)
Call identifier: H2020-MSCA-IF-2019
Coordinator: University of Padova (UNIPD)
Supervisor: Prof. Marcella Bonchio
Fellow: Dr. Elisabetta Benazzi

Despite the intensive effort on nitrogen photofixation, there is a clear gap in the design of the catalytic system at the molecular/atomic level: at the same time, the majority of literature examples for nitrogen photo(electro)reduction employed only Uv-Vis semiconductor-based systems with poor control on the molecular aspects of photo(electro)catalysis. NITROGEN-LIGHT lies in the panorama of nitrogen reduction, but offering a new point of view. This project aims to develop a photoelectrolyser to efficiently convert nitrogen to ammonia, but exploiting semiconductor surfaces decorated with controlled molecular assemblies of visible-light sensitisers and nitrogen-activating multi-redox catalysts. The advantage of the molecular design is the possibility to easily tune the redox properties of active sites and the stabilization of nitrogen-derived intermediates, with the final aim of synchronizing photo-induced electron/proton transfer (PCET), lowering the energy barrier and optimizing the quantum efficiency. Success in this task will be instrumental for the fabrication of novel photocathodes for N2RR, to be integrated within a PEC device, in combination with photoanodes for water oxidation. The photoelectrode assembly for the final device will build on the state-of-the-art expertise and recent achievements of the CalTech and the Padova group, while frontier studies on the photophysics of selected molecular assemblies, to be performed with secondment visits at the Prague Institute, will guide the overall component choice and synthetic modification.


Project acronym: PhotoDark
Project title: Photocatalytic Reactions Under Light and Dark with Transient Supramolecular Assemblies
Grant Agreement Number: 101077698
Duration: 60 months
Funding scheme: HORIZON-ERC
Call identifier: ERC-2022-STG
Principal Investigator: Prof. Luka Dordevic

The efficient conversion of solar energy into molecular fuels has been recognized as one of the grand challenges facing society today. This is motivated by the urgent need to develop affordable, reliable, sustainable modern energy as a way to address the problems arising from the burning of fossil fuels and global warming. Rapid progress is being made in the development of photocatalytic systems that use directly solar light to produce fuels but do so only during daylight. This is a significant oversight, as the overall processes are inefficient due to the intermittent nature of the solar energy source. The next frontier in energy conversion, and the key objective of my proposal, are smart materials that perform photocatalysis under irradiation and, in addition, can trap and concentrate (sun)light to then use it for catalysis under low or no illumination. To achieve this ambitious goal, TENEBRIS aims to develop an unprecedented strategy to enable dark or persistent photocatalysis by using self-assembled materials. TENEBRIS will (i) provide missing insights into light-driven supramolecular polymerization, (ii) deliver smart, autonomous and transient self-assembled materials that perform photocatalysis also under dark, and (iii) establish design principles to be generally applicable for tailormade (nano)materials with functions unattainable through conventional methods. The fundamental outcomes of this research will lead to non-incremental advances in various chemical research areas (photocatalysis, out-of-equilibrium supramolecular chemistry, and materials science and engineering) and to a substantial impact beyond them.


Project acronym: PHOTO-STEREO
Project title: Organocatalytic enantioselective dearomative photocycloadditions for the synthesis of polycyclic heterocycles
Grant Agreement Number: 101106125
Duration: 24 months
Funding scheme: HORIZON-MSCA-2022-PF (European Fellowships)
Call identifier: HORIZON-MSCA-2022-PF-01
Coordinator: University of Padova (UNIPD)
Supervisor: Prof. Luca Dell'Amico
Fellow: Dr. Vasco Corti

The PHOTO-STEREO action provides a general synthetic platform for the organocatalytic enantioselective dearomatization of
heteroaromatic compounds by means of [2+2] photocycloadditions to obtain complex saturated polycyclic compounds in one step
under mild conditions. The proposed strategy relies on the direct excitation, by means of visible light, of organocatalytic
heteroaromatic intermediates to access their excited state reactivity. Furthermore, the implementation of this methodology into a
flow system will enable the collaboration of the host institution with an industrial partner, offering to the fellow a valuable experience
of the dynamics in industrial R&D. PHOTO-STEREO will merge the expertise of the group of Prof. Dell’Amico in photoredox catalysis
with the expertise of the fellow in asymmetric organocatalysis. Overall, this project promotes the efficient use of sustainable
resources, such as light and inexpensive heterocyclic feedstocks, while bringing innovation into the fields of synthetic organic
chemistry and medicinal chemistry. This project will ultimately contribute to the EU’s scientific excellence, and at long term, to
scientific innovation with a positive impact in the society and EU’s economy. Importantly, all the competences acquired during the
realization of this fellowship, together with the creation of new connections with industry and academy, will allow the fellow to reach
a position of complete professional maturity, while providing her with fruitful opportunities for gaining a permanent position as
senior scientist in both academic, or industrial settings


Project acronym: ProID
Project title: Ultrafast Raman Technologies for Protein Identification and Sequencing
Grant Agreement Number: 964363
Duration: 36 months
Funding scheme: H2020- FETOPEN
Call identifier: H2020-FETOPEN-2018-2019-2020

Coordinator: Fondazione Istituto Italiano di Tecnologia
Local Coordinator: Prof. Stefano Corni

The human proteome is the whole set of protein that a human can potentially express. Most of the human proteome is known. However the proteome, being the set of proteins potentially expressed, does not give information regarding the protein really expressed in a specific person or a patient. The possibility of accessing to this fundamental information through a cost and time effective technique will revolutionize our ability to prevent, diagnose and treat most of the human diseases.

This is the commitment of ProID that aims to provide a technological platform able to record single protein Raman spectra with single amino-acid resolution. Namely, by reading the sequence of selected amino-acids along the protein chain, the platform will identify the corresponding protein. To reach this goal we want to combine advanced nanofabrications of plasmonic nanopores with ultrafast time resolved photon detectors and machine learning algorithms. More in details: i) plasmonic nanopores will be exploited to achieve single amino-acid optical excitation and enhanced Raman stimulation; ii) ultrafast and ultrasensitive Raman spectrometers will be obtained by combining the emerging technologies of SPAD (Single Photon Avalanche Diode) arrays with dedicated otpica elements which improve the sensitivity and the speed of the detector, and reduce the number of elements of the array necessary to sample a Raman spectrum; iii) bioinformatics approaches will complete the technological platform by developing specific software for discriminating the Raman spectra of proteins with reduced spectral points. Also, insightful experiments on electrophoretic translocation and augmented fluid viscosity in ultra-confined systems will contribute the molecular motion into the nanopores. Finally, to state of the art in-silico design will support the project by contributing to system optimization and data analyses/interpretation.


Project acronym: PURPEST
Project title: Plant pest prevention through technology-guided monitoring and site-specific control
Grant Agreement Number: 101060634
Duration: 48 months
Funding scheme: Horizon Europe RIA
Call identifier: HORIZON-CL6-2021-FARM2FORK-01
Principal Investigator: Prof. Luca Cappellin


The EU requires rapid and effective actions based on innovative detection concepts targeting quarantine, priority and other serious pests. Fair, healthy and environment-friendly food systems are threatened by increasing pest invasions due to climate change and a growing demand for high quality, pest-free food. The goal of PurPest is to develop, validate and demonstrate an innovative sensor platform that can rapidly detect five different pests during import and in the field to stop their establishment and reduce pesticide inputs by at least 50%. The sensor concept is based on detection of pest-specific volatile organic compounds (VOCs) emitted by host plants invaded by one or several pests. PurPest will determine the VOC signature of Phytophthora ramorum, the Fall armyworm, the Cotton bollworm, the Brown marmorated stinkbug and the Pinewood nematode under different abiotic stress conditions. The VOC database will be exploited to optimize existing and develop new sensor concepts to detect pest-specific VOCs, starting from proof of concept (TRL3) to demonstration in field trials (TRL6). Non-invasive, reliable and rapid pest sensing platforms will increase pest screening efficiency from currently 3% to 80% of plant imports. Preventing outbreaks of new pests and site-specific pesticide use by early detection are the cornerstones of sustainable and integrated pest management (IPM). PurPest will evaluate the socio-economic and ecological impact of 5 pests and how the new detection concept affects these impacts. Direct communication with stakeholders via the advisory board, workshops and webinars is part of PurPest’s multi-actor approach to affirm involvement of all interest groups along the value chain The PurPest project is a strong multidisciplinary consortium with expertise from 10 countries, 7 universities, 5 research institutes, 4 SMEs and 2 governmental agencies.


Project acronym: SolarPlas
Project title: Solar powered atmospheric plasma system for the treatment of contaminated wastewater
Grant Agreement Number: 101106614
Duration: 36 months
Funding scheme: HORIZON-MSCA-2022-PF (Global Fellowships)
Call identifier: HORIZON-MSCA-2022-PF-01
Coordinator: University of Padova (UNIPD)
Supervisor: Prof. Ester Marotta
Fellow: Dr. Mubbshir Saleem

Atmospheric plasma (AP) is envisioned as a revolutionary green technology for wastewater treatment as compared to conventional biological and advanced oxidation processes due to its robust performance in degrading recalcitrant emerging contaminants and micropollutants. AP powered by DC, AC, or pulsed power sources, in the air or in contact with water produces a multitude of reactive species able to attack and ultimately mineralize the contaminants dissolved in water. Salient features of this novel technology include operation at NTP, flexibility, rapid startup, in situ generation of reactive species (e.g. H2O2, O3, ˙OH, ˙NO, NO2˙) without chemical addition which makes it a futuristic green technology. However, an inherent disadvantage is its high energy cost which hinders its large scale application; only a few examples of treatment of real water samples are indeed reported. Previous research on AP application for emerging contaminant removal also lacks in designing and selecting a plasma discharge capable of treating surfactant and non-surfactant types of emerging contaminants efficiently. Therefore the objectives of this proposal include the development and testing of a standalone solar-powered dual discharge plasma reactor (SolarPlas) for sustainable wastewater treatment targeting efficient removal of emerging contaminants of surfactant and non-surfactant nature. The dual discharge will consist of 1) plasma in contact with liquid at the gas-liquid interface for destroying surfactant type of emerging contaminants while 2) plasma discharge at the bottom of the reactor diffused through the air bubbling will effectively degrade non-surfactant type of emerging contaminants from Hospital wastewater and landfill leachate. The main outcome of the project will be in the form of an efficient solar-powered AP reactor (SolarPlas) for wastewater treatment with defined energy efficiency for the treatment of various types of wastewater matrices (municipal, industrial etc.).


Project acronym: SupraPhoCat
Project title: Supramolecular photocatalytic late-stage C-H functionalization
Grant Agreement Number: 101108382
Duration: 24 months
Funding scheme: HORIZON-MSCA-2022-PF (European Fellowships)
Call identifier: HORIZON-MSCA-2022-PF-01
Coordinator: University of Padova (UNIPD)
Supervisor: Prof. Luca Dell'Amico
Fellow: Dr. José Javier Garrido González

Organic synthesis is still one of the main limiting factors in drug-discovery projects. Traditionally, the generation of compounds libraries requires tedious synthetic routes to introduce modifications into the lead compound, thus the implementation of new methodologies to modify drugs in a selective way in the late stages of their synthesis is highly attractive. In SupraPhoCat project, several supramolecular receptors will be provided with catalytic activity and combined with photoredox catalysis to achieve unprecedent asymmetric C-H funtionalization reactions with exquisite selectivity, using CO2 as non-toxic abundant C1 building block. This ambitious project will establish new methodologies for C-H Late-Stage Functionalization of drugs, which is a key point towards the development of libraries of compounds according to EU green chemistry insights. This Marie Sklodowska Curie action will merge the expertise of the host group (Prof. Luca Dell’Amico, NanoMolCat group from University of Padova) in CO2 valorisation methods and photoredox catalysis with the expertise of the fellow on supramolecular chemistry, molecular recognition and organocatalysis. Also, this project has been designed to augment and complement the research and transferable skills sets of the fellow and will greatly enhance his career prospects to become a mature and independent scientist. Through the training and the research results arising, the fellowship will be beneficial to the candidate, the host institution and European scientific and social environment. This research will allow a great improvement of the state-of-the-art in the construction of active organic molecules through a new, powerful, and impacting synthetic methodology, raising the standing of EU chemistry within this field at a global level. Hence, SupraPhoCat will constitute a significant contribution to the field, and will suppose a benefit for synthetic organic chemists, pharma-, agro- and fine-chemicals industries in EU.


Project acronym: SYNPHOCAT
Project title: Synthetic Bimodal Photoredox Catalysis: Unlocking New Sustainable Light-Driven Reactivity
Grant Agreement Number: 101040025
Duration: 60 months
Funding scheme: Horizon Europe - ERC-StG
Call identifier: ERC-2021-StG
Principal Investigator: Prof. Luca Dell’Amico

Solar light is an inexhaustible, abundant, and free reactant that can promote the construction and transformation of molecules. The chemistry community is particularly interested in photocatalysis, which uses light energy to promote a chemical transformation. Photocatalysts (PCs) play a key role in transformative light-driven processes by donating or receiving electrons to or from the target substrate. The selection and structural refinement of PCs can channel reactivity to diverse mechanistic pathways, but often proceeds via trial and error. Here, I will use structure-property relationships to: 1) define novel bimodal organic PCs able to catalyse thermodynamically demanding and opposite photoredox events exploiting their electronically excited state; 2) explore the PCs reactivity by means of their radical ions, going beyond conventional photoredox approaches; 3) capitalise on the new reactivity and bimodal way of action of the PCs to implement novel selective transformations of biological targets under physiological conditions. These project core concepts will be accomplished by the rational evaluation and optimisation of the PCs physicochemical and structural properties as well as the careful analysis of the mechanistic features subtending the light-driven chemical events. Overall, SYNPHOCAT will deliver new conceptual and experimental tools for the sustainable light-driven construction and functionalisation of biorelevant molecules, opening the way to a new dimension of sustainable light-driven chemistry.

Progetti conclusi


"Novel catalyst materials for the cathode side of MEAs suitable for transportation applications"

Project acronym: CathCat
Type of funding scheme: Collaborative Project
Call identifier: FCH-JU-2011-1
 Annual Implementation Plan topics addressed: Fourth Annual Implementation Plan of the Fuel Cells and Hydrogen Joint Undertaking (FCH JU)

Name of the coordinating persons:  Prof. Dr. Ulrich Stimming
Institution: TechnischeUniversitätMünchen (TUM)

Name of the local Coordinator: Prof. G. Granozzi

Novel low temperature fuel cell (FC) cathode catalyst and support systems will be designed and synthesized. The focus will be on highly active catalyst materials for polymer electrolyte membrane fuel cells (PEMFC) for transportation applications.
 These materials will be fully characterized, benchmarked and validated with a multi-scale bottom up approach in order to significantly reduce the amount of precious metal catalyst loadings (< 0.15 g/kW) and to vastly improve fuel cell efficiency and durability.
CathCat combines groups with experimental as well as theoretical fundamental background, researchers from university and institutes with expertise in fundamental Surface Science, as well as applied systems and strong industry partners with long time experience in FC technology.


Project acronym: COPAC
Project title: Coherent Optical Parallel Computing
Grant Agreement Number: 766563
Duration: 36 months
Funding scheme: H2020- FETOPEN
Call identifier: H2020-FETOPEN-2016-2017

Coordinator: University of Liege
Local Coordinator: Prof. Elisabetta Collini, Prof. Barbara Fresch

COPAC is a transformative novel area in computing both because of the technology, coherent information transfer by ultrafast laser addressing of engineered quantum dots, QD, arrays and because of the specialized parallel processing of large amounts of information. We will make foundational experimental, theoretical and algorithmic innovations to demonstrate a new technological paradigm for ultrafast parallel multi-valued information processing. We aim to develop a ground-breaking nonlinear coherent spectroscopy combining optical addressing and spatially macroscopically resolved optical readout to achieve unprecedented levels of speed, density and complexity. Two key high-risk / high-reward pioneering elements are the quantum engineered coherent concatenation of units and the multidirectional optical detection. Experimental demonstrations on tailored multilayer QD arrays of increasing complexity, integration into a device and novel hardware and matched compilers will be delivered. Preliminary experimental demonstrations of the response of solutions and of QD films are available as is the validation of logic operation in parallel.

We use the dynamic response of the designed QD arrays to implement novel paradigms for parallel information processing. The discrete quantal level structure of nanosystems provides a memory at room temperature. Input will be provided simultaneously to all the levels by broadband laser pulses and the dynamical response will implement the logic in parallel. Disorder and environmental fluctuations are not detrimental because controlled level broadening is essential for the simultaneous multidirectional optical readout at the macroscopic level.

The long term vision of COPAC is the application of atomic and molecular state resolved controlled quantum dynamic processes towards information processing. Within this our targeted breakthrough is a novel prototype device for parallel logic engineered to industry standards and with suitable compilers.



Project acronym: CRESCENDO
Project title: Critical Raw material ElectrocatalystS replacement ENabling Designed pOst-2020 PEMFC
Grant Agreement Number: 779366
Duration: 36 months
Funding scheme: Horizon 2020 - FCH 2 JU
Call identifier: H2020-JTI-FCH-2017

Coordinator: Centre National de la Recherche Scientifique (CNRS)
Local Coordinator: Prof. Gaetano Granozzi

CRESCENDO will develop highly active and long-term stable electrocatalysts of non-platinum group metal (non-PGM) catalysts for the PEMFC cathode using a range of complementary and convergent approaches, and will redesign the cathode catalyst layer so as to reach the project target power density and durability requirements of 0.42 W/cm2 at 0.7 V, and 1000 h with less than 30% performance loss at 1.5 A/cm2 after 1000 h under the FC-DLC, initially in small and ultimately full-size single cells tested in an industrial environment on an industrially scaled-up catalyst.

The proposal includes the goal of developing non-PGM or ultra-low PGM anode catalysts with greater tolerance to impurities than current low Pt-loaded anodes. It will develop and apply advanced diagnostics methods and tests, and characterisation tools for determination of active site density and to better understand performance degradation and mass transport losses. The proposal builds on previous achievements in non-PGM catalyst development within all of the university and research organisation project partners. It benefits from the unrivalled know-how in catalyst layer development at JMFC and the overarching expertise at BMW in cell and stack testing, and in guiding the materials development to align with systems requirements.



"Direct ElectroChemical Oxidation Reaction of Ethanol: optimization of the catalyst/support assembly for high temperature operation" (DECORE)

 Project acronym : DECORE
 Type of funding scheme: Collaborative project
 Call identifier: FP7-NMP-2011-SMALL-5

 Name of the coordinating persons: Prof. Gaetano Granozzi
 Institution: University of Padua

 Work programme topics addressed: NMP.2012.1.1-1: Rational design of nano-catalysts for sustainable energy production based on fundamental understanding

 The main general goal of DECORE is to achieve the fundamental knowledge needed for the development of a fuel cell (FC) electrode, which can operate efficiently (both in terms of activity and selectivity) as the anode of a direct ethanol (EOH) FC (DEFC) in the temperature range between 150-200 °C (intermediate-T). Such a technology is still lacking in the market. The choice for EOH as an alternative energy source is well founded on the abundance of bioethanol, and on the relatively simpler storage and use with respect to other energy carriers. The intermediate-T is required for an efficient and selective total conversion of EOH to CO2, so exploiting the maximum number of electrons in the DEFC. DECORE will explore the use of fully innovative supports (based on titanium oxycarbide, TiOxCy) and nano-catalysts (based on group 6 metal carbides, MCx, M=Mo,W), which have never been tested in literature as anodes for DEFCs. The new support is expected to be more durable than standard carbon supports at the targeted temperature. The innovative nano-catalysts would be noble-metal free, so reducing Europe’s reliance on imported precious metals. To tailor the needed materials, the active role of the support and nano-catalyst will be studied at atomic level. Demonstrating an activity of such nano-catalyst/support assembly at intermediate-T would open a novel route where DEFCs with strongly reduced production costs would have an impact on a fast industrialisation. The power range for the envisioned application is of the order of hundreds of Watts, i.e. the so called distributed generation, having an impact for devices such as weather stations, medical devices, signal units, auxiliary power units, gas sensors and security cameras. By the end of the project, a bench-top single DEFC operating at intermediate-T will be built and tested.
 1(Coordinator) Gaetano Granozzi, University of Padova (UNIPD)
 2 Julia Kunze, Technical University of München (TUM)
 3 Cristiana Di Valentin, University of Milano-Bicocca (UNIMIB)
 4 Matthias Arenz, University of Copenhagen (UCPH)
 5 Elena Pastor Tejera, University of Laguna, Tenerife (ULL)
 6 Alessandro Lavacchi, CNR(ICCOM)
 7 Martin Batzer, Elcomax GmbH (ELCO)


"Dynamic Covalent Capture: Dynamic Chemistry for Biomolecular Recognition and Catalysis"

Project acronym: DyCoCa
Type of funding scheme: ERC- Starting Grant
Call identifier:

Principal investigator: Prof. Leonard Prins

The objective of this research project is the development of a new methodology for studying and utilizing the noncovalent recognition between two molecular entities, focussing on biomolecular receptors and catalysts.



Project acronym: INSIGHT
Project title: New chemical detection methods based on NMR and nanoparticles
Grant Agreement Number: 640849
Duration: 18 months
Funding scheme: Horizon 2020 – ERC-PoC
Call identifier: H2020-ERC-2014-PoC

Principal Investigator: Prof. Fabrizio Mancin

Chemicals detection is a crucial problems that Chemistry is addressing since its origin and one of the most important in the everyday life (diagnosis, environment analysis). The most common analytical techniques (chromatography, mass spectrometry, Elisa assays) are able to efficiently separate and detect the target compound but provide only indirect information on its identity and may fail in the identification of new compounds. On the other hand, Nuclear Magnetic Resonance (NMR) spectrometry is probably the most powerful technique in identifying organic compounds. Unfortunately, even if highly desired, a robust method that may allow the use of NMR for analysing mixtures of compounds does not exist.

The research activity carried out by Fabrizio Mancin as PI of the ERC project MOSAIC has recently led to the invention of “NMR sensing”, a new method that allow both the detection and identification of organic molecules, based on the use of NMR spectrometry and nanoparticles. In a simplified picture, the nanoparticles added to the sample are able to “capture” and “label” the target molecule in such a way that the NMR experiment sees only the target and is not disturbed by the other compounds present in the sample. In this way, detection, unambiguous identification and quantification of the analyte are simultaneously possible in a single experiment. This method, already covered by a Patent, showed excellent preliminary results and could find several application in the chemical analysis and diagnostic fields.

The goal of this Proof of Concept application is to bring the “NMR sensing” method at the level of an attractive commercial proposal. In particular, the plan include technical testing and preliminary product realization, recruitment of financial and management competencies, collection of information and data capable to indicate the best strategy to create of a start-up company to be presented to venture capitalists/industrial partners to raise further funding.


Project acronym: ION-MAN
Project title: Rational design of polymerized IONic liquid electrolytes for MultivAleNt ion batteries
Grant Agreement Number: 101068538
Duration: 24 months
Funding scheme: HORIZON-MSCA-2021-PF (European Fellowships)
Call identifier: HORIZON-MSCA-2021-PF-01
Coordinator: University of Padova (UNIPD)
Supervisor: Prof. Vito Di Noto
Fellow: Dr. Francesca Lorandi

With global battery demand projected to increase by 25% per year till 2030, it is urgent to overcome the limitations of commercial Liion
batteries in terms of energy density, safety, cost and carbon footprint. Batteries based on multivalent chemistries can reach
significantly higher energy densities at lower costs. In particular, magnesium has very high volumetric capacity, low reduction
potential, no toxicity, it is easier to handle than lithium, and 3000-times more abundant and more geographically widespread.
Therefore, rechargeable magnesium batteries (RMBs) can enable safe, low-cost, high-energy-density energy storage, contributing to
the energy security and the creation of a competitive battery ecosystem within the European Union.
The major barrier to RMBs is the lack of Mg-conducting electrolytes that allow reversible, charge efficient plating/stripping of metallic
Mg. ION-MAN will develop a new family of high-performing electrolytes for RMBs based on polymerized ionic liquids (PILs). The
rationally designed electrolyte structures combine the strengths of previously reported Mg-conducting electrolytes, to the
exploration of topological effects. An integrated, multi-technique approach that uses advanced characterization tools will enable to
measure physicochemical properties, and propose suitable long-range charge migration mechanisms for the electrolytes. Despite the
bivalency of Mg2+ leads to strong interactions with anions and solvents, the proposed methodology will allow for accurately
identifying the mobile Mg species, their interactions with other components and their reactions with both electrodes of an RMB. Thus,
the compatibility with Mg metal anode and selected cathodes will be thoroughly investigated, defining requirements for device
optimization, toward safe and practical RMBs.


Project acronym: MMBio
Project title: Molecular Tools for Nucleic Acid Manipulation for Biological Intervention
Grant Agreement Number: 721613
Duration: 48 months
Funding scheme: Horizon 2020 - MSCA - ITN
Call identifier: H2020-MSCA-ITN-2016

Coordinator: The Chancellor, Masters and Scholars of The University of Cambridge
Local Coordinator: Prof. Paolo Scrimin, Prof. Fabrizio Mancin


MMbio will bridge the classically separate disciplines of Chemistry and Biology by assembling leading experts from academia and non-academic partners (industry, technology transfer & science communication) to bring about systems designed to interfere therapeutically with gene expression in living cells. Expertise in nucleic acid synthesis, its molecular recognition and chemical reactivity is combined with drug delivery, cellular biology and experimental medicine. This project represents a concerted effort to make use of a basic and quantitative understanding of chemical interactions to develop and deliver oligonucleotide molecules of utility for therapy. Our chemical biology approach to this field is ambitious in its breadth and represents a unqiues opportunity to educate young scientists across sectorial and disciplinary barriers. Training will naturally encompass a wide range of skills, requiring a joint effort of chemists and biologists to introduce young researchers in a structured way to and array of research methodologies that no single research grouping could provide. The incorporation of early-stage and later stage biotechnology enterprises ensures that commercialisation of methodologies as well as the drug development process is covered in this ITN. We hope that MMBio will train scientists able to understand both the biological problem and the chemistry that holds the possible solution and develop original experimental approaches to stimulate European academic and commercial success in this area.


"MOSAIC: Patterning the surface of monolayer-protected nanoparticles to obtain intelligent nanodevices"

Project acronym: MOSAIC
Type of funding scheme: ERC Starting Grants
Call identifier:

Principal investigator: Prof. Fabrizio Mancin

Functional nanoparticles, where an inorganic nanocluster is stabilized by a monolayer of organic molecules, offer unmatched opportunity to build complex structures with simple building blocks and relatively simple manipulations. The main goal of the MOSAIC project is to gain the ability to hierarchically control the self-assembling of metal nanoparticles coating monolayers using supramolecular interactions and take advantage from such ability to obtain complex function from the materials realized.



Project acronym: MULTI-APP
Project title: Multivalent Molecular Systems for Innovative Applications
Grant Agreement Number: 642793
Type of funding scheme: H2020-MSCA-ITN
Name of the coordinating person: Prof. Leonard Prins
Coordinator: University of Padova

This network brings together the major academic players active in Europe on the fundamentals and application of multivalency and cooperativity. The network is complemented by industrial partners ranging in scale from a small spin-off to a large multinational. The main objective of this consortium is to raise a new generation of researchers able to develop complex chemical systems that harness cooperativity for enhanced functional properties.
Multivalency is one of Nature’s governing principles for achieving strong and selective biomolecular recognition. Many biological processes rely on the cooperative effects associated with the occurrence of multivalent interactions. Consequently, there is an enormous interest in the development of chemical multivalent systems that display similar features for innovative applications in fields as various as diagnostics, drug discovery, materials science and nanotechnology.
The central theme of multivalency and cooperativity is used to c


 "MULTI-valued and parallel molecular logic"

 Project acronym : MULTI
 Type of funding scheme: Collaborative project
 Call identifier: FP7-ICT-2011-8

 Name of the coordinating persons: Prof. Françoise Remacle

 Institution: Chimie Physique Théorique, Université de Liège, Belgium

 Name of the local Coordinator: Dr. Elisabetta Collini

MULTI aims at proposing a new approach to computing at the nanoscale that gives up the notion of the conventional Boolean ‘true-false’ switches. MULTI replaces the familiar sequential model of computation that uses Boolean variables by logic operations that are executed in parallel on devices that have a built-in many state memory and whose inputs and outputs are multivalued. MULTI seeks to design, simulate and experimentally implement proof of principle devices on the atomic and molecular scale.
 In MULTI a single atom, molecule or a supra(bio)molecular assembly acts as a logic element. MULTI plans to take advantage of internal degrees of freedom of such atoms or molecules to implement unconventional logic operations by electrical addressing in the solid state and/or by optical addressing in solution.
 Benefits of MULTI approach are higher information rates for inputs and outputs, enhanced rates of processing due to parallelism and computing in memory and exploration of continuous logic.


Project acronym: NANOCARB
Project title: Self-selection of a multivalent nanosystem for carbohydrate recognition
Grant Agreement Number: 657486
Type of funding scheme: H2020-MSCA-IF
Name of the coordinating person: Prof. Leonard Prins
Coordinator: University of Padova

The main objective of the NANOCARB project is to prepare the experienced researcher (ER) for an independent career through the implementation of a frontier research project and a training programme covering all aspects that are required for running a research group. The NANOCARB project has the scientific objective to build up an original method for the development of an innovative class of carbohydrate receptors using dynamic combinatorial chemistry (DCC) on the surface of a gold nanoparticle. Molecular receptors capable of carbohydrate recognition have a great potential in diagnostics and therapeutics. However, this prospective is still remote as it has turned out that designing synthetic receptor molecules able to selectively bind carbohydrates in water is very difficult. The distinguishing feature of this project is that the recognition site for the carbohydrate target is spontaneously formed, driven by the carbohydrate target itself. The self-selected recognition units will then be immobilized covalently on the gold nanoparticle, yielding a multivalent nanosystem able to recognize its target also in vivo.
The project is on the interphase between chemistry, biology and nanotechnology providing an excellent opportunity for the experienced researcher (ER) to develop skills in these areas. Training excellence within the context of becoming independent researcher will involve manuscript and research proposal preparation, public engagement, IPR issues, networking, and conference organization. The project also benefits from external input and a secondment from other groups (Prof. Lay, University of Milan and Prof. Lombardi, University of Piemonte Orientale) in order to fill lacunes not available at the host institution. The combined package of scientific and training objectives will make the NANOCARB project an excellent platform for kick-starting the independent career of the ER and generating a strong visibility to the host institution.


"Development of NEXT GENeration cost efficient automotive CATalysts"

 Project acronym : NEXT-GEN-CAT
 Type of funding scheme: Collaborative project
 Call identifier: FP7-NMP-2011-SMALL-5

 Name of the coordinating persons: Dr. Fotios Katsaros
 Institution: NATIONAL CENTER FOR SCIENTIFIC RESEARCH "DEMOKRITOS" Institute of Physical chemistry /Nanomaterials & Membranes

 Name of the local Coordinator: Prof. A. Glisenti

 The main objective of NEXTGENCAT proposal is the development of novel eco-friendly nano-structured automotive catalysts utilizing transition metal based nanoparticles that can partially or completely replace the Platinum Group Metals. Based on nanotechnology, low cost nanoparticles will be incorporated into different substrates for the development of efficient and inexpensive catalysts.


"Phonon-Assisted Processes for Energy Tranfer and Sensing"

Project acronym : PAPETS
Type of funding scheme: Collaborative project
Call identifier: FP7-ICT-2013-C

Name of the coordinating persons: Dr. Yasser Omar
Institution: Instituto de Telecomunicações, Universidade Técnica de Lisboa, Lisbon, Portugal

Name of the local Coordinator: Dr. Elisabetta Collini

There is mounting experimental and theoretical evidence that suggests that coherent coupling of electronic processes to specific vibrational dynamics is essential to selectively drive physiological processes. This project addresses this newly emerging frontier between biology and quantum physics by aiming to determine the role of coherent vibrational dynamics in the efficiency of energy storage in natural and artificial light harvesting systems, as well as in odour recognition. Although these are at first sight two very different biological processes, in both cases their effectiveness is now believed to rely on phonon-assisted mechanisms. In fact, more generally, it is becoming increasingly clear that vibrational dynamics plays a key role in establishing the fundamental connection between structure and function of protein complexes.



Project acronym: PARTIAL-PGMs
Project title: Development of novel, high Performance hybrid TWV/GPF Automotive afteR treatment systems by raTIonAL design: substitution of PGMs and Rare earth materials
Grant Agreement Number: 686086
Duration: 36 months
Funding scheme: Horizon 2020 - NMP
Call identifier: H2020-NMP-2014-2015 

Coordinator: Warrant Group Srl
Local Coordinator: Prof. Antonella Glisenti

To date, three-way catalytic converters (TWCs) have been established as the most effective engine exhaust after treatment system. However, TWCs not only fail to address the issue of particulate matter (PM) emissions but are also the main industrial consumer of Critical Raw Materials (CRMs) mainly Platinum Group Metals (PGMs) and Rare Earth elements (REEs), with the automotive industry accounting for 65%-80% of total EU PGMs demand. The enforcement of new limits on PM emissions (EURO 6c/7) will require higher TWC performance, hence leading to further increase the CRMs content in autocatalysts.

Addressing the necessity of CRMs reduction in catalysis, PARTIAL-PGMs proposes an integrated approach for the rational design of innovative nanostructured materials of low/zero PGMs/REEs content for a hybrid TWC/Gasoline Particulate Filter (GPF) for automotive emissions after-treatment with continuous particulates combustion also focusing on identifying and fine-tuning the parameters involved in their preparation, characterization and performance evaluation under realistic conditions.

PARTIAL-PGMs approach is broad, covering multiscale modeling, synthesis and nanomaterials’ characterization, performance evaluation under realistic conditions as well as recyclability, health impact analysis and Life Cycle Assessment. The rational synthesis of nanomaterials to be used in these hybrid systems will allow for a reduction of more than 35% in PGMs and 20% in REEs content, either by increasing performance or by their replacement with transition metals. The compact nature of the new hybrid system not only will allow its accommodation in smaller cars but will also reduce cold start emissions and light-off times with performance aiming to anticipate both future emission control regulations and new advances in engines technology. Such R&D progress in autocatalysts is expected to pave the way to the widespread use of such low CRMs content materials in other catalytic applications.




Project acronym: PFCsByPlasCat
Project title: Perfluorinated Organic Compounds (PFCs) Degradation using Non-Thermal Plasma Enhanced by Boron Doped Graphene Oxide as Catalyst
Grant Agreement Number: 898422
Duration: 24 months
Funding scheme: H2020-MSCA-IF (Standard European Fellowships)
Call identifier: H2020-MSCA-IF-2019

Coordinator: University of Padova (UNIPD)
Supervisor: Prof. Cristina Paradisi
Fellow: Dr. Kubra Altuntas

Perfluorinated compounds are a group of toxic chemicals that persist in the environment for long periods. These man-made chemicals have been detected in drinking water and groundwater, raising serious concerns about human health. So far, advanced oxidation processes, including Fenton reagents, ozone oxidants, ultraviolet light or catalysts, have shown limited success in reducing and removing these chemicals. The EU-funded PFCsByPlasCat project will test an alternative treatment option known as non-thermal plasmas that produces several reactive species at a time. Various nanocatalysts will be tested, including boron-doped graphene oxide, to maximise the efficiency of the novel hybrid plasma–catalyst process. Real samples of contaminated groundwater will be tested to validate the process.



Project acronym: PhosChemRec
Project title: Recognition and Cleavage of Biological Phosphates.: Molecular Recognition, Mechanism and Biomedical Applications
Grant Agreement Number:  238679
Type of funding scheme: MSCA-ITN
Name of the coordinating person:  Prof. Florian Hollfelder
Coordinator: University of Cambridge, UK
Local Coordinator: Prof. Paolo Scrimin

Research in this network is centred around understanding the central biological process of phosphate transfer and combines experts in synthetic chemistry, enzyme model building, kinetic analysis, protein chemistry and directed evolution in a concerted effort to gain a quantitative understanding of transition states that are key to understanding how biological systems can achieve phosphate transfer with unrivalled efficiency. Efficiency is also key for drugs, prodrugs or drug delivery reagents that target phosphate bonds.